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ABSTRACT
FairRecKit is aweb-based analysis software that supports researchers
in performing, analyzing, and understanding recommendation com-

putations. The idea behind FairRecKit is to facilitate the in-depth
analysis of recommendation outcomes considering fairness aspects.

With (nested) filters on user or item attributes, metrics can easily be

compared across user and item subgroups. Further, (nested) filters

can be used on the dataset level; this way, recommendation out-

comes can be compared across several sub-datasets to analyze for

differences considering fairness aspects. The software currently fea-

tures five datasets, 11 metrics, and 21 recommendation algorithms

to be used in computational experimentation. It is open source and

developed in a modular manner to facilitate extension. The analysis

software consists of two components: A software package (Fair-
RecKitLib) for running recommendation algorithms on the available

datasets and a web-based user interface (FairRecKitApp) to start

experiments, retrieve results of previous experiments, and analyze

details. The application also comes with extensive documentation

and options for result customization, which makes for a flexible

tool that supports in-depth analysis.
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1 INTRODUCTION
Comparative experimentation is a central means in recommender

systems research [19]. Yet, as a community, we are facing several

challenges in this realm. First, despite progress in recent years,

reproducibility remains an issue [2, 10]. Because already minor dif-

ferences in parameters can yield incompatible results [3, 19], frame-

works with standardized evaluation pipelines were introduced as

a worthwhile path for the research community (e.g., [3, 6]). The

various frameworks put different aspects into the loop. For in-

stance, Anelli et al. [1] supplies a wide range of beyond-accuracy

metrics. Bellogín and Said [3] provide guidelines to improve ac-

countability. LensKit [6] does not only facilitate offline evaluation

but has also been demonstrated useful for educational purposes.

Second, there are barriers to entry in the recommendation field for
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researchers new to the field. LensKit moved from the Java implemen-

tation [9] to a Python toolkit [6] to provide “a more widely-used

and easier-to-learn computational environment”. Still, the required

level of programming skills might be considered a barrier to entry

for students outside the computer science field. While studying,

for instance, the impact of recommender systems is interesting

for students and researchers from a wide range of disciplines, the

requirement to have substantial programming skills limits this kind

of research to researchers from computing-oriented disciplines. As

the recommender systems field is a multidisciplinary research field,

it is important to reduce the barriers to entry from a wider set of

disciplines.

Recently, there is an increasing interest to create fair recom-

mender systems [5, 7]. Addressing the issue of fairness requires

to consider ‘fairness’ aspects in the evaluation. However, it is often
still unclear what is considered ‘fair’ [12] and what exactly needs

to be evaluated [7]. One viable path to follow is to analyze metrics

across various user or item subgroups [20] (as done, for example,

in Ferraro et al. [11] and Ekstrand and Kluver [8]). Due to the exist-

ing research gaps, studying the fairness of recommender systems

(still) requires a high level of exploratory analysis to delve into de-

tail. For instance, studying aspects of fairness embraces exploring

and comparing recommendation performance across various user

or item subgroups, where various attributes can and need to be

used for defining those subgroups. Furthermore, while we typically

compare metrics across approaches, datasets, or subgroups, often

little attention is paid to what items are recommended to users. Yet,

looking into such details may provide insights into where biases

exist and what kind of biases are at play. A tool facilitating such

exploration would particularly help address fairness aspects where

insights and inspiration can be drawn from such discoveries and

observations.

This paper presents FairRecKit—a web-based analysis software—
that aims to address these challenges. The idea behind FairRecKit
is to facilitate experimentation considering fairness aspects. With

(nested) filters on user or item attributes, metrics can easily be com-

pared across user and item subgroups. FairRecKit currently features
five datasets, 11 metrics, and 21 recommendation algorithms. The

metrics and recommendation algorithms are integrated from exist-

ing libraries, and we use widely-used open datasets, which fosters

the reproducibility (and comparability) aspect in recommender sys-

tems research. As a web-based analysis software, it aids researchers
in performing, analyzing, and understanding recommendation com-

putations. The web-based user interface allows researchers with a

decent understanding of recommender systems—yet, not necessar-

ily with extensive programming knowledge—to engage with com-

parative experimentation, reducing the barrier to entry. To the best

of our knowledge, FairRecKit is the first toolkit to provide graphic ac-
cess to recommender systems offline experimentation. Furthermore,

FairRecKit allows for exploring the items that are recommended to

individual users. Besides metadata on the items (e.g., genre, artist

gender) integrated via the Last.fm API
1
and the MusicBrainz API

2
,

FairRecKit also integrates various features from the Spotify API
3

1
https://www.last.fm/api

2
https://musicbrainz.org/doc/MusicBrainz_API

3
https://developer.spotify.com/documentation/web-api/

for music items (e.g., audio features such as danceability, audio snip-

pets). FairRecKit is open source
4
and developed in a modular man-

ner to facilitate extension. The software consists of two components:

(i) A software package (FairRecKitLib) that is used to run recom-

mendation algorithms on the available datasets and (ii) a web-based

user interface (FairRecKitApp) where the researcher starts experi-
ments and retrieves results of previous experiments. Figure 1 shows

a global overview of the client architecture. FairRecKit is a flexible
tool that supports researchers in analysis. It comes with extensive

documentation; a video showing the system in action is available

at the following URL: https://tinyurl.com/FairRecKitDemo.

Figure 1: FairRecKit’s server-client architecture

In the following, we first describe the user interface and the

functionality of FairRecKitApp (Section 2), followed by a description
of FairRecKitLib (Section 3). We conclude this resource paper with

a summary of the main functionalities, a discussion of limitations,

and an outlook on opportunities for use and extension (Section 4).

2 COMPONENTS OF FairRecKitApp
The web-based user interface FairRecKitApp consists of the follow-

ing five parts, which are implemented as ‘tabs’: (i) New Experiment

Tab, (ii) Experiment Queue Tab, (iii) Current Results Tab, (iv) All

Results Tab, and the (v) Documentation Tab.

New Experiment Tab. This tab is used to configure new experi-

ments (Figure 2). Thereby, one can choose from extensive settings

to configure the experimentation. The configuration embraces the

following four parts:

• Datasets. Currently, five datasets are stored and readily avail-
able to choose from (Table 1): LFM-1b [17], LFM-2b [18],

and Last.fm 360K [4] for the music domain; MovieLens-100K

and MovieLens-25M [14] for the movie domain. For each

selected dataset, the train-test split (e.g., 80/20) and the type

of split (random or temporal) can be specified. Further, mul-

tiple dataset filters are available (e.g., considering subgroups

of users or items), whereby also nested filters can be set.

For instance, to compare metrics across artist gender (as in

Ferraro et al. [11]), it is advisable to only consider those data

entries that contain artist gender information. In addition, a

rating converter is optionally available to convert implicit

4
The repository of FairRecKitApp can be accessed at https://github.com/FairRecKit/

FairRecKitApp, the repository of FairRecKitLib at https://github.com/FairRecKit/

FairRecKitLib.
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Figure 2: Experiment Tab.

to explicit ratings; this allows for using recommendation

approaches that are designed for explicit ratings while the

dataset contains implicit ratings. Note that different (nested)

filters or conversions may be configured for each selected

dataset.

Table 1: Integrated datasets with domain and data origin.

Dataset name Reference Domain Data origin

LFM-1b [17] music Last.fm

LFM-2b [18] music Last.fm

Last.fm 360K [4]
5

music Last.fm

MovieLens-100K [14]
6

movies MovieLens

MovieLens-25M [14]
7

movies MovieLens

• Recommendation approaches. In this setting, one or more

of the 21 currently integrated recommendation approaches

(Table 2) can be selected. Each approach comes with a set of

default options that may be modified as required. Further,

the number of item recommendations per user is specified,

and whether to include items with known user ratings.

• Metrics. One or more metrics are available to choose from for

the experiment (Table 3). Some metrics come with a set of

default options that can be modified as required (e.g., setting

the 𝐾 in 𝑃@𝐾). In addition, data filters can be applied to

create subgroups of the metric results (e.g., 𝑃@𝐾𝑓 𝑒𝑚𝑎𝑙𝑒 for

the 𝑃@𝐾 achieved by considering items by female artists

compared to the same metric for male artists (𝑃@𝐾𝑚𝑎𝑙𝑒 )

compared to the entire dataset (𝑃@𝐾𝑎𝑙𝑙 ), as done in Ferraro

et al. [11]). This functionality is useful to compare metrics

across item groups and user groups alike. Similar perfor-

mance across subgroups is a cornerstone for fair recom-

mender systems.

5
https://www.upf.edu/web/mtg/lastfm360k

6
https://grouplens.org/datasets/movielens/100k/

7
https://grouplens.org/datasets/movielens/25m/

Table 2: Integrated recommendation approaches with the
type of algorithmic approach and the source library.

Approach Type Library Ref.

AlternatingLeastSquares Matrix Factorization Implicit [13]

BiasedMF Matrix Factorization LensKit [6]

ImplictMF Matrix Factorization LensKit [6]

BayesianPersonalizedRanking Matrix Factorization Implicit [13]

LogisticMatrixFactorization Matrix Factorization Implicit [13]

BaselineOnlyALS Matrix Factorization Surprise [15]

BaselineOnlySGD Matrix Factorization Surprise [15]

SVD Matrix Factorization Surprise [15]

SVDpp Matrix Factorization Surprise [15]

NMF Matrix Factorization Surprise [15]

ItemItem Collaborative Filtering LensKit [6]

UserUser Collaborative Filtering LensKit [6]

KNNBasic Collaborative Filtering Surprise [15]

KNNBaselineALS Collaborative Filtering Surprise [15]

KNNBaselineSGD Collaborative Filtering Surprise [15]

KNNWithMeans Collaborative Filtering Surprise [15]

KNNWithZScore Collaborative Filtering Surprise [15]

CoClustering Collaborative Filtering Surprise [15]

SlopeOne Collaborative Filtering Surprise [15]

PopScore Basic/Utility LensKit [6]

Random Basic/Utility LensKit [6]

Table 3: Integrated metrics with metric type and source li-
brary.

Metric Metric type Library Reference

HR@K Classification LensKit [6]

P@K Classification LensKit [6]

NDCG@K Ranking LensKit [6]

MRR Ranking LensKit [6]

RMSE Rating LensKit [6]

MAE Rating LensKit [6]

MAPE Rating rexmex [16]

MSE Rating rexmex [16]

ItemCoverage Coverage rexmex [16]

UserCoverage Coverage rexmex [16]

• Metadata. Supplying the experiment with a name and tags

facilitates later retrieval from the list of the stored experi-

mental results (Figure 4). Further, one may supply an e-mail

address to be notified once the computation of an experiment

has been completed.

Experiment Queue Tab. This tab shows the queue of all experi-
ments that are waiting to be processed, with the currently process-

ing one on top of the list. A progress bar indicates the progress of

the current experiment. Entries in the queue may be canceled and

removed from the queue.

Current Results Tab. This tab (Figure 3) provides all information

about the currently loaded results, including the following:
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Figure 3: Current Results Tab.

• Experiment results. The specified metrics are displayed in

tables, separately for each dataset-approach pair. If an exper-

iment has been validated (thus, it had multiple runs), each

run will be displayed individually. Finally, each table may be

exported as a 𝑇𝑆𝑉 file.

• User recommendations. This table shows a (long) list of user-
item combinations with a calculated recommendation (or

prediction) rating and the rank. Further, this table also the

user’s (original) rating if available for an entry. Via a menu,

additional columns can be added; for instance, more informa-

tion about a user or item may be displayed (e.g., user age or

artist gender). Further, filters may be applied to the table (e.g.,

showing only items by female artists). Another functionality

is the Spotify integration for every music dataset matrix that

supports it. If selected, the table may display the album that

an item (track) belongs to and a short audio snippet.
8
One

may modify the number of entries that are loaded per page

of the table,
9
and the table pages may be navigated via the

8
Note that the Spotify features are hidden by default (because loading all these snippets

is slow) but can be enabled by clicking on the ‘Show snippets’ check box.

9
By default, the table’s first 10 entries are loaded.

‘Show next’ and ‘Show previous’ buttons. Initially, the table

is sorted by the first column (rank). Sorting by other proper-

ties may be activated by clicking on the respective column

header (ascending or descending).

• Validation. Experimental results may be validated by per-

forming the computational experiment with the same set-

tings for an additional number of runs. Validation results

can be accessed in the same tab as the original results.

• Table selection. Experiments including various datasets, ap-

proaches, and runs, will deliver enormous result tables. To

counteract the information clutter and provide focus, check

boxes are included to hide/show certain datasets, approaches,

or runs.

• Table comparison. This functionality allows a comparison

of the recommendation results for selected users. To this

end, the researcher may click the “Add table to comparison”

button when viewing the User Recommendations of a specific
user; this will add the respective table to the comparison

view. This can be repeated for several tables across several

users respectively, which will add the respective tables to the

comparison view. Clicking the “show comparison” button

will open a window containing the tables that have been

added to the comparison view. Tables can be re-positioned

with ‘drag &drop’; or removed from the comparison view.

All Results Tab. This tab (Figure 4) shows a list of all previously
computed experiments stored on the server, along with the respec-

tive metadata, and the specified datasets, approaches, and metrics.

One may edit the metadata, view details about an experiment’s

properties, load it into the Current Result Tab, or delete it. Further,
there is an option to copy an experiment’s configuration into the

New Experiment Tab and run a new experiment, whereby the con-

figuration may be adapted before initiating the new experiment.

Figure 4: All Results Tab.

Documentation Tab. This tab provides an overview of the termi-

nology used in the application. Whenever a researcher does not

recognize a certain component, whether it is a dataset, metric, filter,

approach, or functionality, the documentation provides the infor-

mation to utilize the respective component to its full extent. The

Documentation Tab also features a navigation menu to quickly find

a component of interest.

3 COMPONENTS OF THE FairRecKitLib
The library part of the software is an extensive Python library,

which is used to run approaches on datasets and to evaluate the
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results. In this section, we describe its most essential parts; for

more details, we kindly refer to the documentation
10
. The main

components of FairRecKitLib are the following: (i) Core functional-
ity, (ii) Datasets and matrices, (iii) Data pipeline, (iv) Model pipeline,

(v) Evaluation pipeline, (vi) Experiment pipeline, and the (vii) Rec-

ommender system.

We carefully considered the advantages and disadvantages of

existing libraries to find a good mix. The configuration file (layout)

for an experiment was inspired by the one used in Elliot [1]. The

recommendation algorithm interface was inspired by LensKit [6,

9], which also allowed us to easily incorporate Implicit [13] and

Surprise [15].

Core functionality. The core of the library contains the func-

tionality that is needed throughout the pipelines: parsing input,

managing threads, configurations, events, input/output (I/O), and

the base for pipelines. Parsing the input is a vital part of the library

as all functions require their input to be in a correct format and have

correct values to run experiments. Therefore, the library includes

many parsers to check input before it is passed to their respective

functions. Managing threads is useful when working with heavy

computations on big data where these computations would other-

wise block the recommender system from being used while active.

The base class for the pipelines is located in the core of the library.

There are three different pipelines, which are all based on the base

pipeline in the core: the data, model, and evaluation pipelines. An

additional pipeline connects the previously mentioned pipelines

using a data transition which is the experiment pipeline.

Datasets and matrices. Various datasets are first processed (once)
before they become available in a data registry. While processing,

a configuration file is generated, describing the available (event)

tables and matrices, which is similar to a database definition. More-

over, additional user-item matrices can be generated when a dataset

includes an event table, as that table contains user events that have

happened (e.g., a user consumed a specific item at a certain point

in time).

The (pre-)processing step makes sure that each dataset is appro-

priately processed and converted into an abstract standard format.

This makes them easier to use not only in the library itself but also

in the FairRecKitApp. Further, it facilitates adding new datasets

without major challenges.

Data pipeline. The data pipeline is the first step in running an

experiment. Here, the data is processed before running approaches

on it. The data configuration defines one or more dataset matrices

that need to be used in the experiment, which are loaded in this

pipeline. One or more filter passes are applied when provided to

create a subset, where each filter pass applies one or more filters

sequentially. The ratings in the dataset matrix can be converted to

be within a specific range, and finally, the resulting matrix will be

split into a train set and a test set. Then, it is ready for the model

pipeline.

Model pipeline. The model pipeline is the second step in run-

ning an experiment. Here, the model configuration defines which

approaches are run on the train set. The FairRecKitLib uses three

10
https://fairreckit.github.io/FairRecKitLib/

other libraries to provide the algorithmic approaches: Implicit [13],

LensKit [6, 9], and Surprise [15]. The test set, which was created

together with the train set, will be used to determine for which

users to produce a number of item recommendations or for which

user-item pairs to compute rating predictions. The computed rat-

ings are stored in a file incrementally; and when finished, it will be

ready for evaluation in the next pipeline.

Evaluation pipeline. The evaluation pipeline is the third, yet

optional, step in running an experiment and is executed when the

model pipelines finish. According to the evaluation configuration, a

variety ofmetrics are used to compute andmeasure the performance

of the used dataset-approach pairs. Two libraries are used to provide

these metrics, namely LensKit [6] and rexmex [16]. Most of these

metrics will use the computed ratings together with the test set to

validate the outcomes, whereas some (e.g., user or item coverage)

require the train set instead of the test set. In addition, these sets

can be filtered using multiple passes, and hence, they can be used

to compute metrics for a specific subgroup instead of the global

performance.

Experiment pipeline. The experiment pipeline connects the three

previously mentioned pipelines to compute an experiment for one

or more runs. Therefore, the experiment configuration is a com-

bination of the data, model, and evaluation configurations. First,

the data pipeline is run for each selected dataset matrix. Next, each

generated transition result of the data pipeline is fed into the model

pipelines for all the selected approaches. Lastly, each time the model

pipelines finish a data transition result, these are forwarded right

away to run through the evaluation pipelines to compute all se-

lected metrics. This process is then repeated for the number of runs

that are specified alongside the configuration of the experiment.

This happens on a separate thread so that the experiment run(s)

can be canceled at any time.

Recommender system. The top-level API of the library is the

recommender system. The system is initialized by providing it with

a directory where the datasets are stored and a directory where

to store the experiment results. The recommender system can be

queried for the availability of datasets, approaches, and metrics.

Availability of data modification operations can also be requested;

namely data filters, matrix rating converters, and matrix train-test

splitters. Lastly, the recommender system provides functionality

to start a new experiment, validate an existing experiment for an

additional number of runs, and cancel an active computation.

4 CONCLUSION
To sum up, FairRecKit is a web-based analysis software to sup-

port researchers in performing, analyzing, and understanding rec-

ommendation computations. The software currently features five

datasets, 11 metrics, and 21 recommendation algorithms to be used

in experimentation. It is open source and developed in a modu-

lar manner to facilitate extension, which is strongly encouraged.

Opportunities lie in providing a wider scope of metrics. Thereby,

embracing beyond-accuracy metrics would be a strong asset. To

provide the opportunity to analyze for a wider range of fairness

aspects, an enrichment of the datasets with additional metadata

would be beneficial. Further, expanding the scope of domains is
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a viable option. Currently, the focus lies on the music domain as,

for instance, Spotify audio features are integrated. Beyond serving

research purposes, FairRecKit is a software resource that might also

be relevant for teaching.
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